Preservational Pathways of Corresponding Brains of a Cambrian Euarthropod

نویسندگان

  • Xiaoya Ma
  • Gregory D. Edgecombe
  • Xianguang Hou
  • Tomasz Goral
  • Nicholas J. Strausfeld
چکیده

The record of arthropod body fossils is traceable back to the "Cambrian explosion," marked by the appearance of most major animal phyla. Exceptional preservation provides crucial evidence for panarthropod early radiation. However, due to limited representation in the fossil record of internal anatomy, particularly the CNS, studies usually rely on exoskeletal and appendicular morphology. Recent studiesshow that despite extreme morphological disparities, euarthropod CNS evolution appears to have been remarkably conservative. This conclusion is supported by descriptions from Cambrian panarthropods of neural structures that contribute to understanding early evolution of nervous systems and resolving controversies about segmental homologies. However, the rarity of fossilized CNSs, even when exoskeletons and appendages show high levels of integrity, brought into question data reproducibility because all but one of the aforementioned studies were based on single specimens. Foremost among objections is the lack of taphonomic explanation for exceptional preservation of a tissue that some see as too prone to decay to be fossilized. Here we describe newly discovered specimens of the Chengjiang euarthropod Fuxianhuia protensa with fossilized brains revealing matching profiles, allowing rigorous testing of the reproducibility of cerebral structures. Their geochemical analyses provide crucial insights of taphonomic pathways for brain preservation, ranging from uniform carbon compressions to complete pyritization, revealing that neural tissue was initially preserved as carbonaceous film and subsequently pyritized. This mode of preservation is consistent with the taphonomic pathways of gross anatomy, indicating that no special mode is required for fossilization of labile neural tissue.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corrigendum: A xandarellid artiopodan from Morocco – a middle Cambrian link between soft-bodied euarthropod communities in North Africa and South China

Xandarellida is a well-defined clade of Lower Palaeozoic non-biomineralized artiopodans that is exclusively known from the early Cambrian (Stage 3) Chengjiang biota of South China. Here we describe a new member of this group, Xandarella mauretanica sp. nov., from the middle Cambrian (Stage 5) Tatelt Formation of Morocco, making this the first non-trilobite Cambrian euarthropod known from North ...

متن کامل

A Silurian short-great-appendage arthropod

A new arthropod, Enalikter aphson gen. et sp. nov., is described from the Silurian (Wenlock Series) Herefordshire Lagerstätte of the UK. It belongs to the Megacheira (=short-great-appendage group), which is recognized here, for the first time, in strata younger than mid-Cambrian age. Discovery of this new Silurian taxon allows us to identify a Devonian megacheiran representative, Bundenbachiell...

متن کامل

A predatory bivalved euarthropod from the Cambrian (Stage 3) Xiaoshiba Lagerstätte, South China

Bivalved euarthropods represent a conspicuous component of exceptionally-preserved fossil biotas throughout the Lower Palaeozoic. However, most of these taxa are known from isolated valves, and thus there is a limited understanding of their morphological organization and palaeoecology in the context of early animal-dominated communities. The bivalved euarthropod Clypecaris serrata sp. nov., rec...

متن کامل

Cambrian bivalved arthropod reveals origin of arthrodization.

Extant arthropods are diverse and ubiquitous, forming a major constituent of most modern ecosystems. Evidence from early Palaeozoic Konservat Lagerstätten indicates that this has been the case since the Cambrian. Despite this, the details of arthropod origins remain obscure, although most hypotheses regard the first arthropods as benthic predators or scavengers such as the fuxianhuiids or megac...

متن کامل

Fossils and the Evolution of the Arthropod Brain

The discovery of fossilized brains and ventral nerve cords in lower and mid-Cambrian arthropods has led to crucial insights about the evolution of their central nervous system, the segmental identity of head appendages and the early evolution of eyes and their underlying visual systems. Fundamental ground patterns of lower Cambrian arthropod brains and nervous systems correspond to the ground p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Current Biology

دوره 25  شماره 

صفحات  -

تاریخ انتشار 2015